Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Indirect Proof


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

In order to show that a premise $ V$ implies an assertion $ B$ ( $ V
\Longrightarrow B$), one can deduce a contradiction by assuming that $ V$ is true while $ B$ is false, which then implies a false statement $ F$, particularly with $ F = \lnot V$ or $ F=B$:

$\displaystyle V\land(\lnot B)\,\Longrightarrow\,F
\,,
$

In particular, we note that the equivalences

$\displaystyle B = (\lnot B \Longrightarrow F)
\,=\,(\lnot B\Rightarrow B)
$

hold if no premises are made.

(temporary unavailable)

[Back]

  automatisch erstellt am 19.  8. 2013