Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Rotation of a Cartesian Coordinate System


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Rotating the $ xy$ -plane by the angle $ \alpha$ about the $ z$ -axis the coordinates of a point $ P=(p_1,p_2,p_3)$ transform as follows:

$\displaystyle x' = \cos(\alpha)\,x\, + \,\sin(\alpha)\,y,\quad
y' = -\sin(\alpha)\,x\, + \,\cos(\alpha)\,y,\quad
z' = z\,
.
$

\includegraphics[width=0.7\textwidth]{rotation}

Analogous formulas are obtained by rotations about the $ yz$ - and the $ zx$ -plane.


(temporary unavailable)

[Back]

  automatisch erstellt am 19.  8. 2013