Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Example of Relations


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The inclusion of sets $ \subseteq$ is a partial order in the power set $ {\cal P}(M)$ of a set $ M$ since it is

reflexive ( $ A\subseteq A$),

asymmetric ( $ A\subseteq B \land B \subseteq A \Rightarrow A=B$),

and

transitive ( $ A\subseteq B\subseteq C\Rightarrow A\subseteq C$).

However, if $ M$ contains more than one element, then the inclusion is not an order:

$\displaystyle a,b \in M, a\neq b: \{a\} \not\subseteq \{b\} \land \{b\} \not\subseteq \{a\} \,,
$

i.e. it is not complete.

The relation ,,has an equal number of elements `` is an equivalence relation in the power set $ {\cal P}(M)$ of a finite set $ M$ since it is

reflexive ($ \vert A\vert=\vert A\vert$),

symmetric ( $ \vert A\vert=\vert B\vert \Rightarrow \vert B\vert=\vert A\vert$),

and

transitive ( $ \vert A\vert=\vert B\vert=\vert C\vert \Rightarrow \vert A\vert =\vert C\vert$).

(Authors: Hörner/Abele)

see also:


  automatisch erstellt am 11.  6. 2007