Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Real Fourier-Series


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

We determine the real Fourier series of the $ 2\pi$-periodic extension of the function depicted in the figure.

\includegraphics[clip,width=.9\linewidth]{b_fourier_reihe_f}

\begin{displaymath}
f(x)=
\begin{cases}
1, & x\in[-\pi,-\pi/2)\cup[0,\pi/2),
\\
0, & x\in[-\pi/2,0)\cup[\pi/2,\pi).
\end{cases}\end{displaymath}

(i) Cosine coefficients:

$\displaystyle a_0 = \frac{1}{\pi} \int\limits_{-\pi}^\pi f(t)\,dt
= \frac{1}{\pi}\left(
\frac{\pi}{2}+\frac{\pi}{2}\right) = 1
\,.
$

For $ k\ge 1$ we obtain, using that cosine is an odd function,
$\displaystyle a_k$ $\displaystyle =$ $\displaystyle \frac{1}{\pi} \left( \int\limits_{-\pi}^{-\pi/2}\cos(kt)\,dt +
\i...
...i/2}\cos(kt)\,dt \right) =
\frac{1}{\pi} \int\limits_0^\pi
\cos(kt)\,dt = 0
\,.$  

(ii) Sine coefficients:

$\displaystyle b_k$ $\displaystyle =$ $\displaystyle \frac{1}{\pi} \left( \int\limits_{-\pi}^{-\pi/2}\sin(kt)\,dt +
\int\limits_0^{\pi/2}\sin(kt)\,dt \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi} \left( \left[
-\frac{\cos(kt)}{k}\right]_{-\pi}^{-\pi/2} +\left[
-\frac{\cos(kt)}{k}\right]_0^{\pi/2} \right)$  
  $\displaystyle =$ $\displaystyle \frac{1}{k\pi} \left(-2\cos(k\pi/2)+(-1)^k+1\right)
\,.$  

Depending on whether $ \cos(k\pi/2)$ equals 0, $ 1$ or $ -1$, we distinguish $ 3$ cases:
$ k$ odd: $ b_k =0$,
$ k=4m$: $ b_{4m} =0$,
$ k=4m+2$: $ b_{4m+2}=4/((4m+2)\pi)$.

(iii) Fourier series of $ f$:

$\displaystyle \frac{1}{2}+\frac{4}{\pi}\sum_{m=0}^\infty
\frac{\sin\left((4m+2...
...\frac{4}{\pi}\left(\frac{\sin(2x)}{2} + \frac{\sin(6x)}{6} +
\cdots\right)
\,.
$

The figure shows the partial sums

$\displaystyle \frac{1}{2} +\frac{4}{\pi}\sum\limits_{m=0}^n
\frac{\sin\left((4m+2)x\right)}{4m+2}
$

for $ n=2$ and $ n=8$.

\includegraphics[clip,width=.9\linewidth]{b_fourier_reihe_f_p1_p8}

Since $ f$ is not continuous, the convergence of the Fourier series is very slow. We notice oscillations in the vicinity of the jump discontinuities, which is referred to as Gibb's phenomenon.

see also:


  automatisch erstellt am 22.  9. 2016