Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Integration over a Simplex


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

To illustrate the transformation formula we will integrate the function

$\displaystyle f(x,y,z) = (1-x-y)z
$

over the simplex

$\displaystyle S:\quad x,y,z \geq 0\,, \quad x+y+z\leq 1 \, .
$

By transforming the variables by

$\displaystyle \left( \begin{array}{r}x\\ y\\ z\end {array}
\right) = g(u,v,w) =...
...
v (1-u)\\
w (1-u)(1-v) \end {array} \right) \,, \qquad 0 \le u,v,w \le 1 \,,
$

we can describe $ S$ as an image of an elementary cube. With

$\displaystyle g^\prime = \left( \begin{array}{rrr}
1 &0&0\\
-v&(1-u)&0 \\
-w(1-v)&-w(1-u)&(1-u)(1-v)
\end {array} \right)
$

one gets the amount of the jacobian determinate

$\displaystyle \vert\operatorname{det}g^\prime\vert = (1-u)^2 (1-v).
$

Therefore we have
$\displaystyle \int_S f$ $\displaystyle =$ $\displaystyle \int\limits^{1}_{0}\int\limits^{1}_{0}\int\limits^{1}_{0}
\underb...
...\underbrace{(1-u)^2 (1-v)}_{\vert\operatorname{det}g^\prime \vert }\,dw\ dv\ du$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\int\limits^{1}_{0}(1-u)^4\,du\, \int\limits^{1}_{0}
(1-v)^3\,dv$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\ \frac{1}{5}\ \frac{1}{4} = \frac{1}{40} \,.$  

(Authors: Höllig/Much/Höfert)

[Links]

  automatisch erstellt am 20.  8. 2008