Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Example: Algebraic and Geometric Multiplicity


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The matrices

$\displaystyle A_1=\left(\begin{array}{rrr}4& 0 &0 \\ 0 & 4 & 0\\ 0 & 0 & 4\end{...
...3=\left(\begin{array}{rrr}4& 4 &0 \\ 3 & 4 & 6\\ 0 & -2 & 4\end{array}\right)
$

have all the same characteristic polynomial

$\displaystyle (4-\lambda)^3=(4-\lambda)(5-\lambda)(3-\lambda)+4-\lambda=(4-\lambda)^3+12(4-\lambda)-12(4-\lambda)
$

and, hence, the respective algebraic multiplicity is $ m_4=3$. By means of the respective rank of the matrices

$\displaystyle (A_1-4E)=\left(\begin{array}{rrr}0& 0 &0 \\ 0 & 0 & 0\\ 0 & 0 & 0...
...=\left(\begin{array}{rrr}0& 4 &0 \\ 3 & 0 & 6\\ 0 & -2 &
0\end{array}\right)
$

we see that $ d_4=3$ for $ A_1$, $ d_4=2$ for $ A_2$ and $ d_4=1$ for $ A_3$.

see also:


  automatisch erstellt am 25.  6. 2018