Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Mathematical Induction for the Sum of Squares


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The formula for the sum of square numbers,

$\displaystyle A(n):\
\sum_{i=1}^{n} i^2 = 1^2+2^2+\dots+n^2= \frac{1}{6}n(n+1)(2n+1)
\,,
$

can be proved by Mathematical Induction.

Base step ($ A(1)$):

$\displaystyle \sum_{i=1}^{1} i^2 = 1^2 = \frac{1\cdot2\cdot3}{6}
\,.
$

Conclusion ( $ A(n)\implies A(n+1))$:

$\displaystyle \sum_{i=1}^{n+1} i^2$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{n} i^2 + (n+1)^2
= \underbrace{\displaystyle\frac{n(n+1)(2n+1)}{6}}_{
A(n)} + (n+1)^2$  
  $\displaystyle =$ $\displaystyle \displaystyle\frac{(n+1)\big[n(2n+1)+6(n+1)\big]}{6}
= \displaystyle\frac{(n+1)(n+2)(2n+3)}{6}\,.$  

As indicated, the induction hypothesis has been applied to obtain the third equality.

(Authors: Kimmerle/Abele)

see also:


  automatisch erstellt am 11.  6. 2007