Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Example: Inverse Function


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Example:

Determine the inverse function $ f^{-1}(x)$ of the function $ f(x)=1-\frac{2e^x}{e^x+1}$, with $ D_f=\mathbb{R}$ and $ \operatorname{Range}(f)=\mathbb{R}$.

Domain and range of $ f^{-1}(x)$ can be determined at once:

$ D_{f^{-1}}=\mathbb{R}$ and $ \operatorname{Range}(f^{-1})=\mathbb{R}$


Write $ y$ instead of $ f(x)$:

$\displaystyle y=1-\frac{2e^x}{e^x+1}
$

$\displaystyle 1-y$ $\displaystyle =\frac{2e^x}{e^x+1}$    
$\displaystyle 2e^x$ $\displaystyle =e^x+1-ye^x-y$    
$\displaystyle e^x+ye^x$ $\displaystyle =1-y$    
$\displaystyle e^x(1+y)$ $\displaystyle =1-y$    
$\displaystyle e^x$ $\displaystyle =\frac{1-y}{1+y}$    
$\displaystyle x$ $\displaystyle =\ln\left(\frac{1-y}{1+y}\right)$    

Write $ y$ instead of $ x$ and vice versa:

$\displaystyle y=\ln\left(\frac{1-x}{1+x}\right)
$

Substitute $ y$ by $ f^{-1}(x)$

$\displaystyle f^{-1}(x)=\ln\left(\frac{1-x}{1+x}\right)
$

(Authors: Jahn/Knödler)

see also:


  automatisch erstellt am 8.  7. 2004