Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Removable Singularities


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Example:

$\displaystyle f(x)$ $\displaystyle =\frac{x^3-3x^2-2x+6}{x^3-3x^2+x-3} \qquad D_{max}=\mathbb{R}\setminus \{3\}$    
  $\displaystyle =\frac{(x-3)(x^2-2)}{(x-3)(x^2+1)}$    

Check the point $ x=3$:

$\displaystyle \lim_{x \to 3 \textnormal{, } x>3}f(x)$ $\displaystyle =\frac{7}{10}$    
$\displaystyle \lim_{x \to 3 \textnormal{, } x<3}f(x)$ $\displaystyle =\frac{7}{10}$    

Thus there is a removable singularity at the point $ (3/\frac{7}{10})$.

\includegraphics[width=0.8\textwidth]{luecke}
(Authors: Jahn/Knödler)

[Links]

  automatisch erstellt am 8.  7. 2004