Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Theorem of Gauß in the Plane


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The divergence theorem in the plane is a special case of the corresponding theorem of Gauß in space.

Let $ A$ be a region which is the interior of a closed curve $ C$ parametrized counterclockwise by $ \sigma: [a,b] \longrightarrow \mathbb{R}^2 .$ Let $ N(t)$ be the normal vector pointing outward. Then for each continuous differentiable vector field $ \Phi $

$\displaystyle \iint\limits_{A} \operatorname{div}\Phi \,dA
=
\int\limits_a^b \Phi (\sigma (t)) \cdot N(t) dt \ .
$

Note that $ N(t) = (y'(t),-x'(t)) $ if $ \sigma (t) = (x(t),y(t)) .$

The integral

$\displaystyle \int\limits_{C} \Phi \cdot n dx := \int\limits_a^b \Phi (\sigma (t))
\cdot N(t) dt $

is called the flux of $ \Phi $ through $ C$ in the direction of the unit normal $ n = \frac{N(t}{\vert N(t)\vert} .$

Example:


[Links]

  automatically generated 7/ 4/2005