Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Integration with Cylindrical and Polar Coordinates


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For the transformation into cylindrical coordinates

$\displaystyle x = \varrho\cos\varphi,\quad
y = \varrho\sin\varphi,\quad
z = z
$

the volume element has the form

$\displaystyle dx\,dy\,dz = \varrho d\varrho\,d\varphi\,dz
\,.
$

In particular the integral of a function $ f$ on a cylinder is given by

$\displaystyle Z: \quad 0 \le \varrho \le \varrho_0 \,, \quad 0 \le z \le z_0
$

$\displaystyle \int\limits_Z f = \int\limits_0^{z_0} \int\limits_0^{2 \pi} \int\limits_0^{\varrho_0} f(
\varrho,\varphi,z) \ \varrho \ d\varrho\,d\varphi\,dz \,.
$

Similarly the volume element for the transformation with respect to polar coordinates

$\displaystyle x = r \cos\varphi, \quad
y = r \sin\varphi, \quad
$

is

$\displaystyle dx\,dy = r dr\,d\varphi
\,.
$

()

see also:


[Annotations] [Examples]

  automatically generated 8/ 4/2008