Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Jordan Form


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A square matrix $ A$ can be brought to block diagonal form by a similarity transformation

$\displaystyle J =
\left(\begin{array}{ccc}
J_1 & & 0 \\ & \ddots & \\ 0 & & J_k
\end{array}\right)
=
Q^{-1} A Q\,.
$

Here the Jordan blocks have the form

$\displaystyle J_i =
\left(\begin{array}{ccccc}
\lambda_i & 1 & & & 0 \\
0 & \...
...ts & \\
& & & \lambda_i & 1 \\
0 & & & & \lambda_i
\end{array}\right)
\,,
$

where $ \lambda_i$ is an eigenvalue of $ A$.
[Examples] [Links]

  automatically generated 5/17/2011