Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Generalized Eigenvector, Generalized Eigenspace


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Let $ \lambda$ be an eigenvalue of matrix $ A$ with algebraic multiplicity $ m$. A vector $ v$ with

$\displaystyle (A-\lambda E)^mv=0\,,\quad v\neq 0
$

is called generalised eigenvector for eigenvalue $ \lambda$. All generalised eigenvectors together with the zero vector form a subspace of dimension $ m$ called generalised eigenspace $ H_\lambda$ for eigenvalue $ \lambda$. This subspace is invariant under the linear mapping $ A$.

see also:


  automatically generated 5/17/2011