Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Mass, Center of Mass, Barycenter


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The mass of a solid $ K$ with density $ \varrho(x),\,x\in K$ is

$\displaystyle m = \int\limits_K \varrho(x)\,dK
$

The $ \nu$ - th coordinate of the center of mass is

$\displaystyle s_\nu = m^{-1}\int\limits_K x_\nu\varrho(x)\,dK \ .
$

In the special case when $ \varrho(x) = 1$ the first integral yields the volume $ V$ of $ K .$ The $ \nu$ - th coordinate of the (geometric) barycenter of $ K$ is

$\displaystyle s_\nu = V^{-1}\int\limits_K x_\nu \,dK \ .
$

()

see also:


[Examples]

  automatically generated 8/ 4/2008