Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Approximation of Volume


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For a regular region $ V$ the volume can be defined by approximation using a sequence of polygonal regions $ V_n$ with $ \operatorname{dist}_H (V_n,V)\to 0$:

$\displaystyle \operatorname{vol} V =
\lim_{n\to\infty} \operatorname{vol} V_n
\,.
$

The limit exists because of the piecewise continuity of the boundary curves of $ V$ and it is independent from the chosen sequence $ (V_n)$.

(Authors: Höllig/Streit/Höfert)

Example:


[Links]

  automatically generated 8/ 4/2008