Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Expansion Theorem for Determinants


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The determinant of an $ n\times n$-matrix $ A$ can be expanded by any row or column:

\begin{displaymath}
\begin{array}{rcll}
\operatorname{det} A &=&
\sum\limits...
...{i,l} &
(\text{expansion\ by\ column}\ l)\,
,
\end{array}
\end{displaymath}

where $ \tilde A_{i,j}$ denotes the matrix we obtain by deleting the $ i$-th row and the $ j$-th column of $ A$.
(Authors: Burkhardt/Höllig/Hörner)

see also:


[Annotations] [Examples]

  automatically generated 2/10/2005