Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Cyclic Codes


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Generating Polynomials

In the following let $ \mbox{$q=p^f$}$ be a prime power and $ \mbox{$\mathbb{F}_q$}$ denotes the field with $ \mbox{$q$}$ elements.

A linear code $ \mbox{$C\subset\mathbb{F}_q^N$}$ is called cyclic, if

$ \mbox{$\displaystyle
(c_0,\dots,c_{N-1})\in C\;\Rightarrow\;(c_{N-1},c_0,c_1,\dots,c_{N-2})\in C.
$}$

A cyclic code is described by an ideal in $ \mbox{$R:=\mathbb{F}_q[X]/(X^N-1)\mathbb{F}_q[X]$}$; each code word $ \mbox{$c=(c_0,\dots, c_{N-1})\in\mathbb{F}_q^N$}$ is identified with

$ \mbox{$\displaystyle
(c_0,c_1,\dots,c_{N-1})= c_0 + c_1 X + \dots+c_{N-1}X^{N-1}\in R
$}$
.

Note that $ R$ is not a field because $ X^N - 1$ is not irreducible. Assume from now on that $ \mbox{$N$}$ is not divisible by $ \mbox{$p$}$. Starting with a factorization

$ \mbox{$\displaystyle
X^N-1 = f_{(1)}(X)\cdot \ldots \cdot f_{(t)}(X) \in \mathbb{F}_q[X]
$}$
in pairwise different, normalized and irreducible polynomials $ \mbox{$f_{(i)}\in\mathbb{F}_q[X]$}$, the ideals of $ \mbox{$R$}$ have the form
$ \mbox{$\displaystyle
f_{(i_1)}\cdot \ldots \cdot f_{(i_s)}R,
$}$
where $ \mbox{$0\leq s\leq t$}$ and $ \mbox{$1\leq i_1<i_2<\dots<i_s\leq t$}$.

Such a polynomial $ \mbox{$g:=f_{(i_1)}\cdots f_{(i_s)}=\sum_{j=0}^{N-k}g_jX^j$}$ of degree $ \mbox{$N-k$}$ is called a generator polynomial of the cyclic code $ \mbox{$C_g:=gR\subseteq R$}$ of dimension $ \mbox{$k$}$. A generator matrix is

$ \mbox{$\displaystyle
G_g:=\begin{pmatrix}
g_0 & g_1 & \dots & g_{N-k} & \\  ...
...
& & g_0 & g_1 & \dots & g_{N-k}
\end{pmatrix}\in\mathbb{F}_q^{k\times N}.
$}$
The polynomial $ \mbox{$h=\sum_{j=0}^{k}h_j X^j\in\mathbb{F}_p[X]$}$ with $ \mbox{$gh=X^N-1$}$ is called check polynomial of $ \mbox{$C_g$}$. A parity check matrix is given by
$ \mbox{$\displaystyle
H_g:=\begin{pmatrix}
h_k & & \\
h_{k-1} & \ddots & \...
...& \ddots & \vdots \\
& & h_0
\end{pmatrix}\in\mathbb{F}_q^{N\times(N-k)}.
$}$

Minimal Distance in Cyclic Codes

The minimal distance of cyclic codes is in general difficult to determine. The following estimation is known.

Let $ \varphi $ be the Euler $ \varphi $ - function, i.e. $ \mbox{$\varphi(N)$}$ denotes the number of $ n \in \{1,\dots,N\} $ which do not divide $ N .$ .

If $ \mbox{$\alpha$}$ is a zero of $ \mbox{$X^N-1\in\mathbb{F}_q[X]$}$ in $ \mbox{$\mathbb{F}_{q^{\varphi(N)}}$}$ with $ \mbox{$N=\min\{n\in\mathbb{N}:\alpha^n=1\}$}$, then $ \mbox{$\alpha$}$ is called a primitive $ \mbox{$N$}$-th root of unity over $ \mbox{$\mathbb{F}_q$}$.

Let $ \mbox{$C_g \subseteq R$}$ be a cyclic code and $ \alpha $ a primitive $ \mbox{$N$}$-th root of unity. If $ \mbox{$g(\alpha^b)=0, g(\alpha^{b+1})=0, \dots, g(\alpha^{b+\delta-2})=0$}$ for each choice of $ \mbox{$b\in\mathbb{N}$}$, $ \mbox{$\delta \geq 2$}$ then $ \mbox{$d(C_g) \geq \delta$}$.

Coding with Cyclic Codes

Let $ \mbox{$C_g$}$ be a cyclic code with $ \mbox{$g=\sum_{j=0}^{N-k}g_jX^j$}$, length $ \mbox{$N$}$ and dimension $ \mbox{$k$}$. In order to find for a given information word $ \mbox{$u=(u_0,\dots,u_{k-1})\in\mathbb{F}_q^k$}$ a code word $ \mbox{$c=(c_0,\dots, c_{N-1})\in\mathbb{F}_q^N$}$, controlbits are calculated with the aid of polynomial division. For this the information word is first written as an element of $ \mbox{$\mathbb{F}_q[X]$}$.

$ \mbox{$\displaystyle
u(X) := X^{N-k} \sum_{j=0}^{k-1} u_jX^j.
$}$

Polynomial division of $ \mbox{$u(X)$}$ through $ \mbox{$g(X)$}$ yields the residue

$ \mbox{$\displaystyle r(X)=\sum_{j=0}^{N-k-1}r_jX^j\in\mathbb{F}_q[X]$}$
.

Now the code word to the given information word is

$ \mbox{$\displaystyle c = (-r_0,\dots,-r_{N-k-1},u_0,\dots,u_{k-1})$}$
.

()

see also:


[Examples]

  automatically generated 7/14/2005