Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Inverse Map


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A linear map $ \alpha:V\to W$ is injective if and only if $ \operatorname{Ker}\alpha = 0$. In this case an inverse map $ \alpha^{-1}:\operatorname{Im}\alpha\to V$ can be defined by

$\displaystyle w\mapsto v,\quad w = \alpha(v)\,
.
$

This inverse map is also a linear map. In particular we have

$\displaystyle \alpha^{-1}\circ\alpha(v)=v,\quad
\alpha\circ\alpha^{-1}(w)=w
$

for all $ v\in V$ and $ w\in\operatorname{Im}\alpha$.
(Authors: Burkhardt/Höllig/Hörner)

Annotation:


[Links]

  automatically generated 2/ 9/2005