Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Orthogonal and Unitary Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A complex $ n\times n$-matrix $ A$ is called unitary if

$\displaystyle A^{-1} = {\overline{A}}^{\operatorname t}=A^\ast\,
,
$

that is, if the columns of $ A$ form a orthonormal basis of $ \mathbb{C}^n$. For real matrices the complex conjugation can be omitted (as with the scalar product). A unitary matrix with real entries is called orthogonal matrix.

Orthogonal (unitary) matrices form a subgroup of $ \operatorname{GL}(n, \mathbb{R})$ ( $ \operatorname{GL}(n, \mathbb{C})$).

Example:


[Links]

  automatically generated 5/23/2011