Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Scalar Product


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The scalar product of two vectors is defined by
$\displaystyle \vec{a}\cdot\vec{b}$ $\displaystyle =$ $\displaystyle \vert\vec{a}\vert\vert\vec{b}\vert\cos\sphericalangle(\vec{a},\vec{b})$  
  $\displaystyle =$ $\displaystyle a_1 b_1 + a_2 b_2 + a_3 b_3 .$  

In particular, we have

$\displaystyle \vec{a}\cdot\vec{a} = \vert\vec{a}\vert^2
$

and

$\displaystyle \vec{a}\cdot\vec{b} = 0 \quad \Leftrightarrow \quad
\vec{a} \perp \vec{b}\,
.
$

From the coordinate representation of the scalar product it follows

$\displaystyle \vec{a}\cdot\vec{b} =
\vec{b}\cdot\vec{a}
$

and

$\displaystyle \left(s\vec{a}+r\vec{b}\right)\cdot\vec{c} =
s\vec{a}\cdot\vec{c}+r\vec{b}\cdot\vec{c}\,
,
$

i.e., the scalar product has properties analogous to some calculation rules of the product of real numbers.

see also:


[Annotations] [Examples]

  automatically generated 3/28/2008