Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Exponential Function


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The exponential function can be defined as the limit of a sequence or a series:
$\displaystyle e^x = \exp(x)$ $\displaystyle =$ $\displaystyle \lim_{n\to\infty} (1 + x/n)^{n}$  
  $\displaystyle =$ $\displaystyle \sum_{n=0}^\infty \frac{1}{n!} x^n\,
.$  

The exponential function is positive for all $ x\in\mathbb{R}$ and it satisfies the functional equality

$\displaystyle e^{x+y} = e^x e^y\,
.
$

In particular $ e^{-x}=1/e^x$ .

Graph of the exponential function:

\includegraphics{graph_exp}

Annotation:


[Links]

  automatically generated 4/ 7/2008