Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Polynomial Division


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For polynomials $ p$ and $ q$ with $ m=$degree$ \,q\le$degree$ \,p=n$ there exists two unique polynomials $ f$ and $ r$ with

$\displaystyle p = fq + r,$   degree$\displaystyle \,f = n-m,\,$   degree$\displaystyle \,r < m\,
.
$

This decomposition can be determined by division with remainder.

In particular for a root $ t$ of $ p$ follows that $ p(x) = f(x)(x-t)$ with degree$ \,f=n-1$ .

Example:


[Annotations] [Links]

  automatically generated 4/ 8/2008