Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Matrix of a Linear Map


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A linear map $ \alpha: V \longmapsto W$ between two $ K$-vector spaces with bases $ E = \{e_1,\dots,e_n\}$ and $ F = \{f_1,\dots,f_m\}$ is uniquely determined by the images of the basis vectors

$\displaystyle \alpha(e_j) =: a_{1,j} f_1 + \dots + a_{m,j} f_m\, .
$

We obtain the matrix representation

$\displaystyle w_F = Av_E
\longleftrightarrow
w_i = \sum_{i=1}^n a_{i,j} v_j,\quad i=1,\ldots,m\,
,
$

where $ v_j$ and $ w_i$ denote the coordinates relative to the bases $ E$ and $ F$, resp.

see also:


[Annotations] [Examples]

  automatically generated 3/30/2005