Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Matrix Multiplication


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The product of two matrices $ A \in K^{n \times m}$ and $ B \in K^{m \times s}$ is the $ (n \times s)$-Matrix $ AB := (c_{ij})$ defined by

$\displaystyle c_{ij} = \sum_{k=1}^m a_{ik}b_{kj}\, .
$

The product is defined only if the number of columns of $ A$ equals the number of rows of $ B$.

We can interpret the matrix product as follows: The element $ c_{ij}$ of product matrix $ (c_{ij}) = AB$ is the ,,scalar product`` of the $ i$-th row vector of $ A$ and the $ j$-th column vector of $ B$:

$\displaystyle \left(
\begin{array}{ccccc}
& & \vphantom{b_{1j}} & & \\
& & ...
...& \vphantom{\vdots} & & \\
& & \vphantom{b_{mj}} & &
\end{array}
\right)
$

Matrix multiplication corresponds to composition of linear maps

$\displaystyle \alpha: u \mapsto v=Bu,\quad
\beta: v \mapsto w=Av\,
,
$

that is, $ C$ is the matrix representation of $ \beta\circ\alpha$.


Examples:


[Annotations] [Links]

  automatically generated 5/23/2011