Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Maximum Period Length and the Linear Congruential Method


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For a prime number $ \beta$, the sequence $ \alpha^\ell\,$mod$ \,\beta$, $ \ell=0,1,\ldots$, has exactly no period less than $ \beta-1$, if

$\displaystyle \alpha^{(\beta-1)/m} \ne 1\,$mod$\displaystyle \,\beta
$

for all prime divisors $ m$ of $ \beta-1$.

By applying this criterion, appropriate multipliers $ \alpha$ can be determined for the simulation of random numbers by the linear congruential method.

see also:


[Annotations] [Examples]

  automatically generated 12/ 7/2007