Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Cartesian product


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The cartesian product of two sets $ A$ and $ B$ is the set of all ordered pairs of elements of $ A$ and $ B$:

$\displaystyle A\times B = \{(a,b):\ a\in A\land b\in B\}
\,.
$

Note that

$\displaystyle (a,b) = (a',b') \Leftrightarrow
(a=a' \land b=b')
\,.
$

Hence (contrary to the identity of sets: $ \{a,b\}=\{b,a\}$ ), the order of the elements is crucial.

Analogously, the $ n$-fold cartesian product

$\displaystyle A_1\times \cdots \times A_n
$

is defined as the set of all ordered tupels $ (a_1,\ldots,a_n)$ with $ a_i\in A_i$. If $ A_i = A_j$ for all $ 1 \leq i,j \leq n$, then the notation $ A^n = A\times \cdots \times A$ is used.
(Authors: Höllig/Hörner/Abele)

see also:


[Examples]

  automatically generated 5/25/2009