Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Linear Algebra and Geometry - Lines and Planes

Distance Point-Line


[previous page] [next page] [table of contents][page overview]

The projection $ X$ of a point $ Q$ on a line through $ P$ with direction $ \vec{u}$ satisfies

$\displaystyle \overrightarrow{PX} = t\vec{u},\quad
t = \frac{(\vec{q}-\vec{p})\cdot\vec{u}}{\vert\vec{u}\vert^2}
\,.
$

From this we obtain the distance of the point $ Q$ from the line by

$\displaystyle d =
\frac{\left\vert(\vec{q}-\vec{p})\times\vec{u}\right\vert}
{\vert\vec{u}\vert}\,
.
$

\includegraphics[width=12cm]{a_abstand_punkt_gerade_bild}

(temporary unavailable)

[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017