Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Normal Forms - Diagonalisation

Normal Matrices


[previous page] [next page] [table of contents][page overview]

A matrix $ A \in \mathbb{C}^{n \times n}$ is called normal if

$\displaystyle A A^\ast= A^\ast A\,,
$

where $ \bar{A}^{\operatorname t}=A^\ast$. In particular, unitary and Hermitian matrices are normal.

For real normal matrices we have $ AA^{\operatorname t}= A^{\operatorname t}A$. In particular, orthogonal and symmetric matrices satisfy this equation.

(Authors: App/Burkhardt/Höllig/Kimmerle)

(temporary unavailable)

  automatically generated 4/21/2005