Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 9: Singular Value Decomposition and Approximation Problem


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find for the matrix

$\displaystyle A=\begin{pmatrix}1 & 0 \\ 2 & 2 \\ 0 & 1 \end{pmatrix}$

the singular value decomposition and the solution $ X$ of the approximation problem
$ \vert AX-[0,1,0]^t\vert \rightarrow $ min.


Answer:

Singular values:
$ s_{1}=$ $ > \; s_{2}=$ .

Solution of the approximation problem:
$ X=\frac{1}{9} \Big[$ , $ \Big]^{\operatorname t}\; .$

   

(Authors: Höllig/Höfert)

see also:


  automatically generated: 3/12/2018