Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 311: Matrix Calculations


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Given the matrices

$\displaystyle A=\left(\begin{array}{rrr} 1 & 2 & 0 \\ 4 & 0 & 3 \\ 2 & -1 & 2
\...
...} \sqrt{2} & 1 & 2 \\
1 & \sqrt{3} & 7 \\ 2 & 7 & \sqrt{5} \end{array}\right) $

as far as the vector $ v=(-1, 1, 1)^{\rm {t}}$. Determine

$ {\rm {det}}(A^2B^2)\ =\ $

$ {\rm {Tr}}(A^{-1}BA)\ =\
$$ \cdot i+$

$ {\rm {Rg}}(A+E_3)\ =\
$

$ v^{\operatorname t}Av\ =\ $

$ \left<v\times Cv, v\right>\ =\
$


   

(Authors: Knödler/Höfert)

[Links]

  automatically generated: 8/11/2017