Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 309: States on Eigenvalues and Diagonalisable Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Consider $ A\in\mathbb{C}^{n\times n}$ with $ n\in\mathbb{N}$. Let $ \lambda_1,\,\ldots ,
\lambda_k$ be the eigenvalues of $ A$ and $ d_1,\,\ldots , d_k$ the corresponding geometric multiplicities. Let $ E_n$ be the $ n\times n$-identity matrix. Mark which states are true respectively false:

$ A=\bar{A}$ and $ A$ symmetric $ \Longrightarrow$ $ A$ is diagonalisable n/a true false
$ d_1=\ldots = d_k=1$ $ \Longrightarrow$ $ A$ is diagonalisable n/a true false
$ A$ is diagonalisable $ \Longrightarrow$ $ {\rm {rank}}\,A=n$ n/a true false
$ A$ is diagonalisable $ \Longrightarrow$ $ A^4-A^3+E_n$ is diagonalisable n/a true false


   


[Links]

  automatically generated: 8/11/2017