Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 81: Eigenvalues and Eigenvectors of Cyclic Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Show that the vectors

$\displaystyle v_1=(1, 1, 1)^{\rm {t}}, \quad
v_2=(1, \omega, \omega^2)^{\rm {t...
...t}},
\qquad \quad {\mbox{for}} \quad \omega={e}^{\frac{2\pi{\mathrm{i}}}{3}}, $

are eigenvectors of the cyclic matrix

$\displaystyle C=\left(\begin{array}{ccc} 0 & a & 1 \\ 1 & 0 & a \\ a & 1 &
0\end{array}\right) \ , $

and find the according eigenvalues. For which $ a$ all eigenvalues are real and for which $ a$ the eigenvalues are purely imaginary?
(Authors: Höllig/Höfert)

Solution:


[Links]

  automatisch erstellt am 12.  3. 2018