Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 76: Accumulation Points and Convergent Subsequences


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find all accumulation points of the following sequences. Give for each accumulation point a subsequence $ (a_n)$ that converges against this point.

a) $ a_n={\displaystyle{\sin\,\frac{n\pi}{6}}}$  b) $ a_n={\displaystyle{\frac{(-1)^n}{n}}}$
c) $ a_n={\displaystyle{\frac{(-1)^n(1-n)}{2n+1}}}$  d) $ a_n=(-1)^{\frac{1}{2}n(n+1)}$
e) $ a_n=n\,(-1)^n$  f) $ a_n=\min\,\{n, 1000\}$

(Authors: Kimmerle/Roggenkamp/Apprich/Höfert)

[Links]

  automatisch erstellt am 12. 12. 2007