Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 66: True-False: Linear Algebra


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


a)
Proof the following formulas for all $ n\in\mathbb{N}$:


i)      $ {\displaystyle{\sum_{k=1}^n (2k-1)^2 =
\frac{1}{3}\,n\,(4n^2-1)}}$           ii)      $ {\displaystyle{\sum_{k=0}^n \left({n\atop
k}\right) = 2^n}}$

b)
Let be $ z\in\mathbb{C}$, $ A\in\mathbb{C}^{n\times
n}$ and $ B\in\mathbb{C}^{m\times n}$. Let $ \beta$ be the linear map defined by $ x\longmapsto Bx$ and $ Q$ the quadric given by

$\displaystyle Q:\, 3x_1^2-2x_2^2+3x_3^2+6x_1x_3-1=0 \ .$

Mark which statements are always true respectively false, and give reasons for your answers.

$ z+\overline{z}=0$ $ \Longleftrightarrow$ $ z\in\mathbb{R}$  true $ \bigcirc $  false $ \bigcirc $
The map $ f: \mathbb{C}\longrightarrow \mathbb{R}$, $ z\longmapsto \vert z\vert$, is surjective  true $ \bigcirc $  false $ \bigcirc $
$ {\rm {Ker}}\,(\beta)\subset\mathbb{C}^n$  true $ \bigcirc $  false $ \bigcirc $
$ {\rm {det}}\,(A+A^{\rm {t}})=2\,{\rm {det}}\,(A)$  true $ \bigcirc $  false $ \bigcirc $
0 is $ k$-fold eigenvalue of $ A$ $ \Longleftrightarrow$ $ {\rm {Rg}}\,(A)=n-k$  true $ \bigcirc $  false $ \bigcirc $
$ Q$ describes a hyperbolic cylinder  true $ \bigcirc $  false $ \bigcirc $

(Authors: Walk/Blind/Kimmerle/Apprich/Höfert)

[Links]

  automatisch erstellt am 18. 10. 2004