Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 565: Eigenvalue Problem with Parameter, Taylor expansion


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Consider the eigenvalue problem

$\displaystyle \begin{pmatrix}0 & 1 & \varepsilon \\
0 & 0 & 1 \\
1 & \varep...
...lon)=
\lambda(\varepsilon) v(\varepsilon), \quad \vert v(\varepsilon)\vert=1.
$

a)
Find the eigenvector $ v(0)$ corresponding to the eigenvalue $ \lambda(0)=1$.
b)
Expand $ \lambda $ as a function in $ \varepsilon$, up to terms of second order.
c)
Use the expansion of $ \lambda $ to find an expansion of $ v(\varepsilon)$.

(Authors: Höllig/Höfert)

[Links]

  automatisch erstellt am 18.  1. 2017