Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 56: Complex Conjugated Eigenvalues and Eigenvectors


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Let $ A$ be a matrix in $ \mathbb{C}^{n\times n}$.
a)
Show: If all entries of $ A$ are real and $ \lambda\in\mathbb{C}$ is an eigenvalue of $ A$, than $ \overline{\lambda}$ is eigenvalue of $ A$, too. Which relation exists between the eigenvectors corresponding to $ \lambda$ and $ \overline{\lambda}$?
b)
Assume $ A^4=E$. Which complex numbers are possible eigenvalues of $ A$?
c)
Assume $ A^4+A^2+E = 0$. Is it possible for $ A$ to have real eigenvalues?

(Authors: Kimmerle/Roggenkamp/Höfert)

Solutions:


[Links]

  automatisch erstellt am 14. 10. 2004