Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 50: Orthonormalization of Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


a)
Find all real orthogonal $ 2\times 2$-matrices.
b)
Show that

$\displaystyle B=\left\{\left(\begin{array}{r} 2\\ 4\\ -4\end{array}\right),
\le...
...d{array}\right), \left(\begin{array}{r}
-2\\ -13\\ 4\end{array}\right)\right\} $


is a basis of $ \mathbb{R}^3$, and transform $ B$ into an orthonormal basis using the Schmidt method.

(Authors: Kimmerle/Höfert)

see also:



  automatisch erstellt am 14. 10. 2004