Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 5: Real and Imaginary Part of Complex Numbers


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find a representation like $ a+{\rm {i}}\,b$ with $ a,b\in\mathbb{R}$ for the following complex numbers:
a)      $ {\displaystyle{z = \frac{2-{\rm {i}}}{1+{\rm {i}}}}}$           b)      $ {\displaystyle{z =
\frac{\sqrt{3}+2\sqrt{2}\,{\rm {i}}}{\sqrt{3}-\sqrt{2}\,{\rm {i}}}}}$           c)      $ {\displaystyle{z =
\frac{(2+{\rm {i}})(3-2{\rm {i}})(1+2{\rm {i}})}{(1-{\rm {i}})^2}}}$
d)      $ z = (1-2{\rm {i}})^4$           e)      $ z = \sqrt[3]{\,\rm {i}}$           f)      $ {\displaystyle{z = \frac{\left[{\textstyle{2(\cos
\frac{\pi}{12}+{\rm {i}}\sin...
...eft[{\textstyle{4(\cos
\frac{\pi}{4}+{\rm {i}}\sin \frac{\pi}{4})}}\right]^3}}}$

(Authors: Kimmerle/Roggenkamp/Kirchgaessner/Brenner/Werner/Höfert)

see also:



  automatisch erstellt am 29.  7. 2009