Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 457: P-Norm


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The set $ \left\{ x \in \mathbb{R}^n: \vert x_1\vert^p+ \cdots + \vert x_n\vert^p \leq 1 \right\}$ is convex for $ 1 \leq p \le \infty$. Use this relation to show that

$\displaystyle \Vert x \Vert _p := \left( \vert x_1\vert^p + \cdots + \vert x_n\vert^p\right)^{1/p}
$

is a norm. Also proof the inequality $ \Vert x \Vert _p \leq \Vert x \Vert _q $, $ p \geq q$, and show, that $ \lim\limits_{p\rightarrow \infty} \Vert x \Vert _p = \max \vert x_i\vert$ holds.
(Authors: Höllig/Höfert)

see also:



  automatisch erstellt am 18.  1. 2017