Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 23: Linear Independence of Matrices, Matrix Powers


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Given the matrices

$\displaystyle A=\left( \begin{array}{rrr}
2 & -6 & 6 \\
3 & -7 & 6 \\
3 & -6 ...
...\begin{array}{lll}
1 & x & x^2 \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right). $

a)
Calculate $ A^2$ and test, if the unitiy matrix $ E$ and the matrices $ A$ and $ A^2$ are linearly independent in the vector space of the $ 3\times 3$-matrices over the reals.
b)
Calculate $ B^2$ and $ B^3$ and use induction to derive a formula for $ B^{\mathit n}$, $ n\in\mathbb{N}$.

(Authors: Walk/Werner/Höfert)

Solution:


[Links]

  automatisch erstellt am 18. 10. 2004