Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 132: Tangent to Parabola / Minimization of Areas


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Let $ f(x)=\frac{1}{2}\,x^2+1$ , for $ x>0$ , and let $ P(u\vert f(u))$ be a point of the graph $ K_f$ of $ f$ . The tangent and the normal to $ K_f$ in the point $ P$ form, together with the $ x$ -axis, a triangular. Which $ u>0$ leads to a minimal area of the triangular?

(Authors: Apprich/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 12. 2007