Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 115: Differentation as Linear Map


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


a)
Let $ D$, defined by $ Df=f'$, be the map on the set of all real functions that are differentiable for all degrees of differentiation.
i)
Show that $ D$ is linear.
ii)
Give all eigenvalues of $ D$.
iii)
Find an eigenfunction of $ D$, corresponding to the eigenvalue $ \lambda$, i.e. a function $ f\neq 0$ with $ Df=\lambda f$.
b)
Let $ P_4(\mathbb{R})$ be the vector space of the real polynomials of degree $ \leq 4$, and let $ D$, defined by $ Df=f'$, be the map of $ P_4(\mathbb{R})$ onto itself. Find the matrix representation of $ D$ with respect to the basis $ B=\{1, x, x^2,
x^3, x^4\}$.

(Authors: Apprich/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 10. 2004