Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Solution to the problem of the (previous) week


Problem:

From a square piece of cardboard with an edge length of $ 10\ \mathrm{cm}$ a square pyramid should be made as is illustrated in the figure.


\includegraphics[width=.3\linewidth]{TdM_12_A2_bild1}              \includegraphics[width=.4\linewidth]{TdM_12_A2_bild2}



Answer:

$ a = $      cm  
$ h = $      cm  
$ V_{\max} = $      cm$ ^{3}$  
$ S = $      cm$ ^{2}$  

(The results should be correct to four decimal places.)


Solution:

Let $ s$ be the slant height of the pyramid. Then, we have

$\displaystyle 2s + a = 10\sqrt{2} $

and

$\displaystyle h = \sqrt{s^2 - (a/2)^2}\, . $

Substituting this expression into the formula of the pyramid's volume, we obtain

$\displaystyle V = \dfrac{1}{3}a^2 h = \dfrac{1}{3}a^2
\sqrt{\left(\dfrac{10\sqrt{2}-a}{2}\right)^2 - \left(\dfrac{a}{2}\right)^2 } \,.
$


To simplify matters we maximize

$\displaystyle f(a) = 9 V^2 = a^4 \left(50 - 5\sqrt{2} a\right) \,.
$

From

$\displaystyle 0 = f'(a) = 200 a^3 - 25\sqrt{2} a^4
$

follows

$\displaystyle a = 4\sqrt{2} \approx 5.6569
$

being the only positive solution.

Moreover,

$\displaystyle s = \dfrac{10\sqrt{2} - a}{2} = 3\sqrt{2}\,, %\approx 4.2426\,,
$


$\displaystyle h = \sqrt{\left(3\sqrt{2}\right)^2 - \left(2\sqrt{2}\right)^2} =
\sqrt{10}
\approx 3.1623\,,
$


$\displaystyle V_{\max} = \dfrac{1}{3} \cdot \left(4\sqrt{2}\right)^2 \cdot \sqrt{10}
= \dfrac{32\sqrt{10}}3
\approx %0.0337 L^3 =
33.7310\,,
$


$\displaystyle S = a^2 + 2as = 32 + 2\cdot 4\sqrt{2}\cdot 3\sqrt{2}
%= \dfrac{4}{5}L^2
= 80\,.
%= 0.8 L^2
$


[problem of the week]