Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Basics - Complex Numbers

Powers of Complex Numbers


[previous page] [next page] [table of contents][page overview]

For $ z = r e^{\mathrm{i}\varphi}$ and a rational exponent $ p/q$ ,

$\displaystyle z^{p/q} =
r^{p/q} \exp(p(\varphi+2\pi j)\mathrm{i}/q),\quad
j=0,\ldots,q-1
\,.
$

The fractional power is ambiguous since $ \varphi=\operatorname{arg}(z)$ is determined only up to multiples of $ 2\pi$ . Possible values differ by powers of the $ q$ -th roots of unity:

$\displaystyle w_q^0,w_q^p,\ldots,w_q^{(q-1)p},\quad
w_q = \exp(2\pi\mathrm{i}/q)
\,.
$

(Authors: Höllig/Hörner/Kopf/Abele)

In order to calculate

$\displaystyle z =(-1+\mathrm{i})^{2/3}
$

we transform $ z$ into polar coordinates. This yields

$\displaystyle \left(\sqrt{2} \exp\left(\frac{3 \pi \mathrm{i}}{4}\right)\right)...
...sqrt[3]{2} \exp\left(\frac{\mathrm{i}\pi}{2}\right) w_3^{2k},
\quad k=0,1,2\,,
$

with $ w_3 = \exp(2\pi\mathrm{i}/3)$. Thus, possible values are

$\displaystyle z_0 =$ $\displaystyle \sqrt[3]{2}\; \mathrm{i} \,,$    
$\displaystyle z_1 =$ $\displaystyle \sqrt[3]{2} \; \mathrm{i} \exp\left( \frac{4 \pi \mathrm{i}}{3} \right) = \sqrt[3]{2}\left( \frac{\sqrt{3}}{2}-\frac{\mathrm{i}}{2} \right)\,,$    
$\displaystyle z_2 =$ $\displaystyle \sqrt[3]{2}\; \mathrm{i} \exp\left( \frac{8 \pi \mathrm{i}}{3} \right) = \sqrt[3]{2}\left( -\frac{\sqrt{3}}{2} -\frac{\mathrm{i}}{2} \right)\,.$    

The results can be easily checked. For example, we have

$\displaystyle z_1^3 = \left(\sqrt[3]{2} \;\mathrm{i} \exp\left( \frac{4 \pi \mathrm{i}}{3}
\right) \right)^3 = -2 \,\mathrm{i} \,,
$

which equals $ (-1+\mathrm{i})^2$ .


For irrational and purely imaginary exponents, one generally obtains infinitely many solutions, as shown in the following examples:


[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017