Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Normal Forms - Eigenvalues and Eigenvectors

Sum and Product of Eigenvalues


[previous page] [next page] [table of contents][page overview]

Let $ \lambda_i$ denote the $ n$ not necessarily different eigenvalues of $ n\times n$ matrix $ A$. Then the follwing holds true:

$\displaystyle \sum_{i=1}^n \lambda_i = \operatorname{Sp}(A),\quad
\prod_{i=1}^n \lambda_i = \operatorname{det}(A)
\,.
$


(temporary unavailable)

The matrix

$\displaystyle A=\left(\begin{array}{rr}a & b\\ c & d\end{array}\right)
$

has the characteristic polynomial

$\displaystyle p_A(\lambda)=\lambda^2-(a+d)\lambda+(ad-bc)
$

with zeros

$\displaystyle \lambda_{1,2}=\frac{(a+d)\pm\sqrt{(a+d)^2-4(ad-bc)}}{2}\,.
$

Forming the sum of the eigenvalues the root expression vanishes and we obtain

$\displaystyle \lambda_1+\lambda_2=\frac{(a+d)+(a+d)}{2}=a+d=\operatorname{Spur}(A)\,.
$

Multiplying the two eigenvalues we get by the third binomial formula:

$\displaystyle \lambda_1
\lambda_2=\frac{(a+d)^2-(a+d)^2+4(ad-bc)}{4}=ad-bc=\operatorname{det}(A)\,.
$


  automatically generated 4/21/2005