Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Analytic Geometry - Quadrics

Simplistic Classification of Quadrics


[previous page] [next page] [table of contents][page overview]

Starting from the equation of a quadric

$\displaystyle Q:\quad x^{\operatorname t}A x + 2b^{\operatorname t}x + c =0
$

let

\begin{displaymath}
\tilde{A} = \left(
\begin{array}{c\vert c}
c & b^{\operatorname t}\\
\hline
b & A
\end{array}\right)\,.
\end{displaymath}

$ Q$ is called


Given the quadric

$\displaystyle Q:\quad x_1^2 +\lambda x_2^2 +2x_2 +\lambda =0
$

with $ \lambda\in\mathbb{R}$, or in terms of matrices

$\displaystyle Q:\quad x^{\operatorname t}A x + 2b^{\operatorname t}x + c =0
$

where

\begin{displaymath}
A=\left(
\begin{array}{cc}
1 & 0 \\
0 & \lambda\\
\end{arr...
...0 & 1\\
0 & 1 & 0\\
1 & 0 & \lambda\\
\end{array}\right)\,.
\end{displaymath}

For $ \lambda=0$ we have $ \operatorname{Rg}(A)=1$. Otherwise: $ \operatorname{Rg}(A)=2$. For $ \lambda=\pm 1$ we have $ \operatorname{Rg}(\tilde{A})=2$, otherwise: $ \operatorname{Rg}(\tilde{A})=3$.

Thus, $ Q$ is parabolic for $ \lambda=0$, conic for $ \lambda=\pm 1$ and a central quadric for all other $ \lambda$.


  automatically generated 4/21/2005