Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Example: Euclidean Normal Form of Two-Dimensional Quadrics


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The equation

$\displaystyle 3x_1^2+3x_2^2+10x_1x_2-12\sqrt{2}x_1-4\sqrt{2}x_2-8=0
$

can be written as quadratic form

$\displaystyle x^{\operatorname t}A x+2b^{\operatorname t}x+c=
x^{\operatorname ...
...array}{rr}3 & 5 \\ 5 & 3\end{array}\right)x+
2\sqrt{2}\left(-6,-2\right)x-8\,.
$

In order to put this quadratic form into normal form, first of all, find the eigenvalues and eigenvectors of matrix $ A$. The characteristic polynomial

$\displaystyle (3-\lambda)^2-25=9-6\lambda +\lambda^2-25 =\lambda^2-6\lambda-16
$

has the zeros

$\displaystyle \lambda_{1,2}=\frac{6\pm\sqrt{36+64}}{2}=3\pm5\,.
$

For $ \lambda_1=-2$ we obtain the linear system of equations

$\displaystyle \left(\begin{array}{rr}5 & 5\\ 5 &5\end{array}\right)x=0
$

and find the eigenvector $ v_1=(-1,1)^{\operatorname t}$. Since the second eigenvector must be orthogonal to the first one, we obtain $ v_2=(1,1)^{\operatorname t}$. This yields the following orthogonal transformation matrix

$\displaystyle U=\frac{1}{\sqrt{2}}\left(\begin{array}{rr} -1 & 1\\ 1 & 1\end{array}\right)\,.
$

Transforming the equation by $ x=Uy$ leads to
0 $\displaystyle =$ $\displaystyle y^{\operatorname t}\tilde{A}y+2\tilde{b}^{\operatorname t}y+c$  
  $\displaystyle =$ $\displaystyle y^{\operatorname t}U^{\operatorname t}
AU y+2\left(b^{\operatorname t}U\right)y + c$  
  $\displaystyle =$ $\displaystyle -2y_1^2+8y_2^2+8y_1-16y_2-8\,.$  

Completing squares yields

0 $\displaystyle =$ $\displaystyle -2y_1^2+8y_2^2+8y_1-16y_2-8$  
  $\displaystyle =$ $\displaystyle -2(y_1+2)^2-8y_1+8+8(y_2-1)^2+16y_2-8+8y_1-16y_2-8$  
  $\displaystyle =$ $\displaystyle -2z_1^2+8z_2^2-8$  

or

$\displaystyle \frac{z_1^2}{2^2}-\frac{z_2^2}{1^2}+1=0\,.
$

Thus the conic section is a hyperbola.


[Links]

  automatisch erstellt am 13.  7. 2018