Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Types of Critical Points


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

We determine the critical points of the function

$\displaystyle f(x,y)=y(1-x^2-y^2)
$

and their type.

First, we compute gradient and Hesse matrix:

$\displaystyle \operatorname{grad}f=\begin{pmatrix}-2xy\\ 1-x^2-3y^2\end{pmatrix},\quad
\operatorname{H}f=\begin{pmatrix}-2y & -2x\\ -2x & -6y\end{pmatrix}\,.
$

Then, the characterization $ \operatorname{grad}f=(0,0)^$t for critical points yields

$\displaystyle xy=0
\quad\land\quad
x^2=1-3y^2
\,,
$

i.e.,

$\displaystyle (0,\pm 1/\sqrt{3}),\quad
(\pm 1,0)
\,.
$

The corresponding Hesse matrices are

$\displaystyle \begin{pmatrix}
\mp 2/\sqrt{3} & 0\\
0 & \mp 6/\sqrt{3}
\end{pmatrix},\quad
\begin{pmatrix}
0 & \mp 2\\
\mp 2 & 0
\end{pmatrix}\,.
$

To determine the type, we compute their determinant and trace:

Alternatively, the type of the critical points can be determined by examining the zero set of $ f$ and the the corresponding sign pattern.

\includegraphics[width=0.7\linewidth]{vorzeichenverteilung_kreis_xachse}

$\displaystyle f(x,y)=0
\qquad \Longleftrightarrow \qquad
y=0 \quad \vee \quad x^2+y^2=1
$

Saddle points occur at self intersections of the zero set with sign changes of $ f$. Local extrema exist in bounded areas, determined by the zero set. In areas where $ f$ is positive (negative), $ f$ has at least one local maximum (minimum).
[Links]

  automatisch erstellt am 23.  1. 2017