Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Introduction to Finite Fields


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Rings and Fields

A Ring $ R$ is a set with an addition $ \mbox{$+$}$ and a multiplication $ \mbox{$\cdot$}$, which are both associative. The addition is commutative. Moreover the following law of distributivity holds in $ R$

$\displaystyle \forall a,b,c \in R : a \cdot (b + c) = a \cdot b + a \cdot c \ . $

Each ring $ R$ has a zero element $ \mbox{$0$}$ and a unity $ \mbox{$1$}$ such that

$\displaystyle \forall a \in R : a + 0 = a$    and $\displaystyle a \cdot 1 = a \ . $

For each $ \mbox{$x\in R$}$ exists $ \mbox{$-x\in R$}$ such that $ \mbox{$x + (-x) = 0$}$.

If additionally for each element $ \mbox{$x\in R\backslash \{ 0\}$}$ there is a multiplicative inverse $ \mbox{$x^{-1}$}$, i.e. $ \mbox{$x\cdot x^{-1} = 1$}$, then $ R$ is called a skew field (or often also a division ring).

If the multiplcation is commutative, then a ring $ R$ is called commutative and a skew field is called a field.

Examples.

Note that a polynomial is a formal expression. It becomes a function from $ R$ to $ R$ by substituting $ X$ by elements of $ R .$ For some rings $ \mbox{$R$}$ it is possible that different polynomials of $ R[X]$ yield in this way the same function.

Ideals.

An ideal $ \mbox{$I$}$ in a commutative ring $ \mbox{$R$}$ is a subset of $ R$ such that

For example the even numbers $ \mbox{$2\mathbb{Z}$}$ are an ideal of $ \mbox{$\mathbb{Z}$}$ or $ \mbox{$(X^2 + 1)\mathbb{R}[X]$}$ is an ideal of $ \mbox{$\mathbb{R}[X]$}$.

Each ideal $ \mbox{$I$}$ of $ \mbox{$R$}$ defines a new ring, the so-called residue class ring $ \mbox{$R/I$}$. The elements of $ R/I$ are subsets of $ R$ of the following form. Let $ s$ be a fixed element of $ R .$ Then

$\displaystyle \overline {s} := \{x \in R ; x - s \in I \} $

is called the residue class of $ s$ with respect to the ideal $ I .$ Note that $ \overline {s} = \overline {t} $ if and only if $ s \in \overline {t}$ if and only if $ t \in \overline {s} .$ An element $ x \in \overline {t}$ is called a representative of the residue class.

One checks easily that with the following addition and multiplication

$\displaystyle \overline {s} + \overline {t} := \overline {s+t} , \ \ \ \ \overline {s} \cdot \overline {t} := \overline {s \cdot t} .$

$ R/I$ is a commutative ring.

Example. $ \mbox{$\mathbb{Z}/2\mathbb{Z}$}$ has the elements $ \mbox{$2\mathbb{Z}= \{\dots,-2,0,2,\dots\}$}$ and $ \mbox{$1 + 2\mathbb{Z}= \{\dots,-1,1,\dots\}$}$. The calculations in $ \mbox{$\mathbb{Z}/2\mathbb{Z}$}$ may be done by representatives (omitting the bars and taking into account that $ 1 +1 = 0$ ) ,

$ \mbox{$\displaystyle
3\cdot (5 + 7) + 4 \; =\; 1\cdot (1 + 1) + 0 \; =\; 1\cdot 0 + 0 \; =\; 0\; ,
$}$

because modifications modulo $ \mbox{$2\mathbb{Z}$}$ are permitted. More cumbersome but also correct is the calculation

$ \mbox{$\displaystyle
3\cdot (5 + 7) + 4 \; =\; 40 \; =\; 0 .
$}$

Finite Fields

We define first with the ideal $ p\mathbb{Z}$ of $ \mathbb{Z}$ the finite fields $ F_p$ with $ p$ elements, $ p$ a prime, via

$ \mbox{$\displaystyle \mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}.$}$

Using the notation above the elements of $ F_p$ are described by

$\displaystyle \overline {0}, \overline {1}, \ldots , \overline {p-1} .$

Note that $ n\mathbb{Z}$ is for each natural number $ n$ an ideal of $ \mathbb{Z}.$ But the residue class ring $ \mathbb{Z}/n\mathbb{Z}$ is a field if and only if $ n$ is a prime. If $ n$ is not a prime, then $ n = a \cdot b$ with natural numbers $ a, b \geq 2
.$ In $ \mathbb{Z}/n\mathbb{Z}$ one gets $ \overline {a} \cdot \overline {b} = \overline {0} .$ Hence neither $ \overline {a}$ nor $ \overline {b}$ are zero and both elements have no multiplicative inverse.

A polynomial $ \mbox{$f(X) = X^k + a_{k-1} X^{k-1} + \cdots + a_0$}$ in $ \mbox{$\mathbb{F}_p[X]$}$ is called irreducible, if it is not the product of two polynomials of lower degree. Otherwise it is called reducible. The irreducible polynomials play in $ \mathbb{F}_p[X]$ a similar role as the primes in $ \mathbb{Z}.$ Note that irreducibility quite often may be checked only by testing all possible divisors of a given polynomial $ f(X) $, i.e. by division of $ f(X) $ by any polynomial of degree less or equal than a half of the degree of $ f(X) .$

Examples.

Using irreducible polynomials over the field of $ p$ elements one can construct all other finite fields. This is the main content of the following theorem.

Theorem.

The constant polynomials form with addition and multiplication in $ \mbox{$\mathbb{F}_p\subseteq \mathbb{F}_{p^k}$}$ a field ( more precisely a subfield of $ \mathbb{F}_{p^k}$ ) which is obviously isomorphic to $ \mathbb{F}_p .$ .

Let $ g(X)$ and $ f(X) $ be polynomials in $ \mbox{$\mathbb{F}_p[X]$}$ such that $ 1 \leq$   deg$ f(X) \leq$   deg$ \ g(X) .$. Then by polynomial division we can write

$ \mbox{$\displaystyle
g(X)\; =\; t(X) f(X) + r(X) \; ,
$}$
where the degree of the residue $ \mbox{$r(X)$}$ is less than the degree of $ \ g(X) .$ Thus in $ \mbox{$\mathbb{F}_{p^k}$}$
$ \mbox{$\displaystyle
g(X)\; =\; r(X) \; .
$}$

Suppose that $ \mathbb{F}_{p^k} = \mathbb{F}_p[X]/g(x)\mathbb{F}_p(X)$ with irreducible polynomial

$\displaystyle g(X) = X^k + a_{k-1} X^{k-1} + \cdots + a_0) - (a_{k-1} X^{k-1} + \cdots +
a_0 .$

Then we can express $ X^k$ in $ \mathbb{F}_{p^k}$ as

$ \mbox{$\displaystyle
X^k \; =\; 1\cdot(X^k + a_{k-1} X^{k-1} + \cdots + a_0) ...
..._{k-1} X^{k-1} + \cdots + a_0)
\; =\; - (a_{k-1} X^{k-1} + \cdots + a_0)\; .
$}$

Using this one shows that each element of $ \mathbb{F}_{p^k}$ may be expressed as a unique linear combination of of the elements $ 1, X , X^2, \ldots , X^{k-1}$ over $ \mathbb{F}_p .$ So $ \mbox{$\mathbb{F}_{p^k}$}$ is a vector space over $ \mbox{$\mathbb{F}_p$}$ with basis $ \mbox{$\{1,X,X^2,\dots,X^{k-1}\}$}$.

A vector space of dimension $ \mbox{$k$}$ over $ \mbox{$\mathbb{F}_p$}$ has $ \mbox{$p^k$}$ elements. Therefore $ \mbox{$\mathbb{F}_{p^k}$}$ has $ \mbox{$p^k$}$ elements and these elements are represented by all polynomials of degree less than $ k .$

Note that the residue class ring $ \mbox{$\mathbb{Z}/p^k\mathbb{Z}$}$ has also $ \mbox{$p^k$}$ elements. But for $ \mbox{$k\geq 2$}$ this ring is not a field because then $ p^k $ is not a prime (see above). Also in $ \mbox{$x\in\mathbb{F}_{p^k}$}$ the equation

$ \mbox{$\displaystyle \underbrace{x + x + \cdots + x}_{p\;\text{ summands}} = 0$}$
is valid for each element. This is for $ 1 \in $ \mathbb{Z}/p^k \mathbb{Z}$ $ not the case.

Primitive Elements, Zech-Logarithms

Each element in $ \mbox{$x$}$ of $ \mbox{$\mathbb{F}_{p^k}\backslash\{0\}$}$ staisfies the equation $ \mbox{$x^{p^k-1} = 1$}$. If $ \mbox{$p^k-1$}$ is the minimal exponent $ \mbox{$m \geq 1$}$ such that $ \mbox{$x^m =1 $}$ then $ x$ is called primitive.

One can show that each finite field has at least one primitive element. Note that if $ \alpha $ is primitive, then each non-zero element of $ \mathbb{F}_{p^k}$ is a power of $ \alpha .$ Note that a randomly chosen element of a finite field is with high probability primitive.

Fix a primitive element primitive element $ \mbox{$\alpha\in\mathbb{F}_{p^k} .$}$ Then with respect to this element Zech-logarithms are defined as follows.

If $ \mbox{$1 + \alpha^m = \alpha^l$}$ then $ \mbox{$l\in [1,p^k - 2]$}$ is called the Zech-logarithm of $ \mbox{$m\in [0,p^k - 2]$}$. Note that $ \mbox{$l$}$ is uniquely determined except in the case when $ \mbox{$\alpha^m = -1$}$. In this case we define $ \mbox{$l = -1$}$.

All non -zero elements of a finite field are described by a power of a primitive element. Thus multiplications of these elements may be easily performed. The Zech-logarithms are useful for the addition, because for $ \mbox{$\alpha^j\neq -\alpha^i$}$

$ \mbox{$\displaystyle
\alpha^i + \alpha^j\; =\; \alpha^i (1 + \alpha^{j-i}) \; =\; \alpha^{i + l}\; ,
$}$
where $ \mbox{$l$}$ denotes the Zech-logarithm of $ \mbox{$j - i$}$. In the case $ \mbox{$\alpha^j = -\alpha^i$}$ the formula does not apply. But in this case the result is $ 0 .$

Example. Consider the field of $ 4$ elements defined as $ \mbox{$\mathbb{F}_4 :=
\mathbb{F}_2[X]/(X^2 + X + 1)\mathbb{F}_2[X]$}$. $ \alpha = X$ is primitive, because $ \mbox{$\alpha^1 = X$}$, $ \mbox{$\alpha^2 = X + 1$}$ and $ \mbox{$\alpha^3 = 1$}$. The corresponding Zech - logarithms follow from the the table

$ \mbox{$\displaystyle
\begin{array}{rcccl}
1 + \alpha^0 & = & 0 & = & - \\
1...
... & = & \alpha^2 \\
1 + \alpha^2 & = & X & = & \alpha^1\; . \\
\end{array}$}$

The Zech - logarithm of $ \mbox{$m = 0$}$ is $ \mbox{$l = -1$}$ and $ \mbox{$\alpha^1 + \alpha^2 = \alpha(1 + \alpha^1) = \alpha^{1 + 2} = 1$}$.

Frobenius Automorphism

The Frobenius-automorphism of $ \mbox{$\mathbb{F}_{p^k}$}$ is a bijective map $ F: \mathbb{F}_{p^k} \longrightarrow \mathbb{F}_{p^k} $ defined by

$ \mbox{$\displaystyle F(x) = x^p$}$
.

It has the properties that

$\displaystyle F(xy) = F(x)F(y) \ $   and$\displaystyle \ \ F(x+y) = F(x) + F(y) \ $   for$\displaystyle x,y \in \mathbb{F}_{p^k}. $

Because $ a^p = a $ for $ a \in \mathbb{F}_p$ ( \mathbb{F}_p considered as subfield), it follows that $ \mbox{$F(ay) = a F(y)$}$ provided $ \mbox{$a\in\mathbb{F}_p$}$. Clearly $ x^{p^k} = x$ for a primitive element $ x$ of $ \mathbb{F}_{p^k} .$ Therefore this equation is valid for each element of $ \mathbb{F}_{p^k}$ and it follows for the Frobenius automorphism $ F$ that $ \mbox{$F^k = \underbrace{F\circ F\circ \cdots\circ F}_{k-\text{fach}} = {\mbox{id}}$}$.

(Author: Kimmerle)

[Examples] [Links]

  automatically generated 7/ 7/2005