Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Fourier Basis


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Taking the powers of the root of unity

$\displaystyle w_n = \exp(2\pi\mathrm{i}/n)\,
,
$

we obtain an orthogonal basis of $ \mathbb{C}^n$. The matrix of the basis vectors is

$\displaystyle \left(\begin{array}{ccc}
w_n^{0\cdot 0} & \cdots & w_n^{(n-1)\cd...
...w_n^{0\cdot (n-1)} & \cdots & w_n^{(n-1)\cdot (n-1)}
\end{array}\right)\,
.
$

Orthogonality of the columns can easily be verified. The (complex) scalar product of the $ (j+1)$-th and the $ (k+1)$-th basis vector amounts to

$\displaystyle \sum_{\ell=0}^{n-1}
w_n^{j\ell} \overline{w_n^{k\ell}} =
\sum_\ell w_n^{(j-k)\ell} =
\frac{w_n^{(j-k)n} - 1}{w_n^{j-k}-1}\,
,
$

and the numerator equals zero since $ w_n^n=1$.

For $ n=4$ we have $ w_4 = \exp(2\pi\mathrm{i}/4)=\mathrm{i}$, and we obtain

$\displaystyle \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \mathrm{i} & -1...
...& -1 & 1 & -1 \\
1 & -\mathrm{i} & 1 & \mathrm{i}
\end{array}\right)\,
.
$

(Authors: App/Burkhardt/Höllig)

[Examples] [Links]

  automatically generated 1/18/2005